Chebyshev collocation treatment of Volterra–Fredholm integral equation with error analysis
نویسندگان
چکیده
منابع مشابه
Chebyshev Collocation Spectral Method for Solving the RLW Equation
A spectral solution of the RLW equation based on collocation method using Chebyshev polynomials as a basis for the approximate solution is proposed. Test problems, including the motion of a single solitary wave with different amplitudes are used to validate this algorithm which is found to be more accurate than previous ones. The interaction of solitary waves is used to discuss the effect of th...
متن کاملChebyshev Spectral Collocation Method for Computing Numerical Solution of Telegraph Equation
In this paper, the Chebyshev spectral collocation method(CSCM) for one-dimensional linear hyperbolic telegraph equation is presented. Chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. A straightforward implementation of these methods involves the use of spectral differentiation matrices. Firstly, we transform ...
متن کاملOn a modication of the Chebyshev collocation method for solving fractional diffiusion equation
In this article a modification of the Chebyshev collocation method is applied to the solution of space fractional differential equations.The fractional derivative is considered in the Caputo sense.The finite difference scheme and Chebyshev collocation method are used .The numerical results obtained by this way have been compared with other methods.The results show the reliability and efficiency...
متن کاملGeneralized Chebyshev Collocation Method
In this paper, we introduce a generalized Chebyshev collocation method (GCCM) based on the generalized Chebyshev polynomials for solving stiff systems. For employing a technique of the embedded Runge-Kutta method used in explicit schemes, the property of the generalized Chebyshev polynomials is used, in which the nodes for the higher degree polynomial are overlapped with those for the lower deg...
متن کاملCollocation Solutions of a Weakly Singular Volterra Integral Equation
p(t, s) := s tμ , (1.2) where μ > 0, K(t, s) is a smooth function and g is a given function, can arise, e.g., in heat conduction problems with mixed boundary conditions ([2], [10]). The case when K(t, s) = 1 has been considered in several papers. The following lemma summarizes the analytical results for (1.1) in the case K(t, s) = 1. Lemma 1.1. (a) [12] Let μ > 1 in (1.2). If the function g bel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Arabian Journal of Mathematics
سال: 2019
ISSN: 2193-5343,2193-5351
DOI: 10.1007/s40065-019-0243-y